
Allaire Corporation

JRun Samples Guide

JRun 3.0 for Windows®, UNIX™, and
Linux™

Copyright Notice

© 1999, 2000 Allaire Corporation. All rights reserved.

This manual, as well as the software described in it, is furnished under license and may
be used or copied only in accordance with the terms of such license. The content of
this manual is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Allaire Corporation. Allaire
Corporation assumes no responsibility or liability for any errors or inaccuracies that
may appear in this book.

Except as permitted by such license, no part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without the prior written permission of Allaire
Corporation.

ColdFusion is a registered trademarks of Allaire Corporation. Ejipt, Allaire, JRun, JRun
Studio, and the Allaire logo are trademarks of Allaire Corporation in the United States
and other countries. Linux is a trademark of Linus Torvalds. Microsoft, Windows,
Windows NT, and Windows 95 are registered trademarks of Microsoft Corporation.
Java, JavaBeans, JavaServer, JavaServer Pages, JSP, JavaScript, JavaSoft, JavaBeans,
JDK, Enterprise Java Beans, EJB, RMI, JNI, JNDI, JDBC, and Solaris are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other
countries. UNIX is a trademark of The Open Group. All other products or name brands
are the trademarks of their respective holders.

Part number: AA-EJSMP-RK

Contents

Chapter 1: Introduction ...1

About JRun Samples .. 2
Samples for Servlet Technologies ... 2

JSP sample overview... 2
Custom tag library sample overview... 3
Servlet sample overview... 3

EJB Samples .. 4
EJB sample overview .. 4
Additional EJB information ... 6

Additional Samples .. 7

Chapter 2: JSP Samples..9

JSP Sample Overview ... 10
Hello World... 10

Description.. 10
File name... 10
What to look for .. 10

Color Size Bean... 10
Description.. 10
File name... 10
What to look for .. 10

JavaScript Example .. 11
Description.. 11
File name... 11
What to look for .. 11

QueryString Example... 11
Description.. 11
File name... 11
What to look for .. 11

HTML Form Example .. 11
Description.. 11
File name... 12
What to look for .. 12

ii JRun Samples Guide

Chapter 3: Tag Library Samples ..13

Tag Library Sample Overview ..14
Query and QueryParam..14

Description ..14
File name..14
What to look for ...14

Form, Input, and Select ..15
Description ..15
File name..15
What to look for ...15

Servlet and ServletParam ...15
Description ..15
File name..15
What to look for ...15

Param...15
Description ..15
File name..16
What to look for ...16

ForEach..16
Description ..16
File name..16
What to look for ...16

Chapter 4: Servlet Samples ...17

Sample Servlet Overview..18
JRunDemoServlet ...18

Description ..18
File name..18
What to look for ...18

SimpleServlet ..18
Description ..18
File name..19
What to look for ...19

DateServlet ..19
Description ..19
File name..19
What to look for ...19

CounterServlet ..19
Description ..19
File name..19
What to look for ...20

SnoopServlet ...20
Description ..20
File name..20
What to look for ...20

Chapter 5: Getting Started with EJB Samples ..21

Contents iii

Overview ..22
Before You Begin...22
Sample 1a - Simple Beans and Security ..22

Running the samples ..23
How to Use Sample 1a..25

Multiple clients..26
Sample 1a Usage Scenarios..26

Embedding the EJB engine...26
Subclassing the EJB engine...27
Debug mode ..28
Client updates..29

Sample 1b - Custom Authentication ...30

Chapter 6: Bean Managed Persistence ...31

Overview ..32
Sample 2a - Default Authentication ..32
Sample 2b - Custom Authentication ...33

Chapter 7: Container Managed Persistence...35

Overview ..36
Sample 3a - Default Authentication ..36

Using the instance.store ...37

Chapter 8: Transactions ...39

Sample 4a - Distributed Transactions...40
Customization of the JNDI Context ...40
Client Demarcated Transactions ...41
Implicit Transactions ..41

Sample 4b - Transactions and CMP ..43

Chapter 9: Object Management..45

Overview ..46
Sample 5a - Dynamic Object Release..46
Sample 5b - Custom RMI Sockets..47
Sample 5c - Large Enumerations...48

Chapter 10: Messaging ..49

Overview ..50
Sample 6a - Point-to-Point ..50
Sample 6b - Publish/Subscribe ...53
Sample 6c - EJB Integration ...54

Chapter 11: Advanced Beans ..57

Overview ..58

iv JRun Samples Guide

Beans..58
Process ...59
Deadlocks ..60
Sample 7a - Complex Processing...60
Sample 7b - Complex Processing with BMP...61
Sample 7c - Complex Processing with CMP ...62
Prepared Statements ..63

Chapter 12: Using EJB with Servlets ...65

Overview ..66
Sample 9a ..66

Chapter 13: JDK 1.1 Clients ...67

Sample 10a - Using JDK1.1 Clients..68

Chapter 14: Make Files...69

Using Make Files ...70
Make and makew...70
Using Make Jars...71
Using Make Deploy ...71
Using Make Redeploy ...72
Using Make Standalone ..72
Using Make Classes...72
Using Make Start ...73
Using Make Restart ...73

Choosing the Right Makefile ..73
Using Fail-Safe Mode ...74

Using RMID ...75
RMID on Solaris and Linux...75
RMID on Windows ..75
Troubleshooting RMID...75

Note to Cygnus users ..76

C H A P T E R 1

Chapter 1 Introduction

The samples provided with JRun illustrate the various ways that the server can be
used. They include servlet samples and EJB samples.

Contents

• About JRun Samples... 2

• Samples for Servlet Technologies ... 2

• EJB Samples .. 4

• Additional Samples .. 7

2 JRun Samples Guide

About JRun Samples
JRun includes a full suite of samples that show you how to use servlet technologies
(servlets, JSP pages, and custom tags) and EJBs. Running these samples and examining
the associated source code can help you get started with JRun.

To run the samples you must have completed all of the installation steps. If you have
not already done so, review the JRun Setup Guide before attempting to run any
samples.

Samples for Servlet Technologies
JRun includes samples for all types of servlet technologies. This includes JSP samples,
custom tag library samples, and servlet samples. You access these samples by clicking
Example Applications from the JMC Welcome page.

JSP sample overview

JRun provides the following JSP samples:

• Hello world sample

• Color size bean sample

• JavaScript sample

• QueryString sample

• HTML form example

You can find JSP samples in Chapter 2.

Hello world sample

Displays Hello World in gradually increasing and decreasing point sizes.

Color size bean sample

Shows you to how to use methods and properties in the ColorSizeBean JavaBean.

JavaScript sample

Shows you how to use JavaScript (instead of Java) in a JSP page.

QueryString sample

Shows you how to use the request.getParameter method to access text from the
query string.

Chapter 1: Introduction 3

HTML form example

Shows you how to code a form that uses JSP.

Custom tag library sample overview

The JSP 1.1 specification includes a JSP extension mechanism known as tag libraries. A
tag library defines a set of custom tags (also known as actions) that encapsulate certain
types of functionality. JRun includes a custom tag library and the JRun examples
include the following samples of using this tag library:

• Query and QueryParam sample

• Form, Input, and Select sample

• Servlet and ServletParam sample

• Param sample

• ForEach sample

You can find JSP samples in Chapter 3.

Query and QueryParam sample

Show you how to issue SQL statements using the query and queryparam tags.

Form, Input, and Select sample

Show you how to enhance interactivity by using the form, input, and select tags.

Servlet and ServletParam sample

Show you how to invoke servlets using the servlet tag and pass parameters using the
servletparam tag.

Param sample

Shows you how to declare a JSP scripting variable using the param tag.

ForEach sample

Shows you how to code a loop using the foreach tag.

Servlet sample overview

JRun provides the following servlet samples:

• SimpleServlet sample

• DateServlet sample

4 JRun Samples Guide

• CounterServlet sample

• SnoopServlet sample

You can find servlet samples in Chapter 4.

SimpleServlet sample

Shows you how to set the content type and return HTML that includes a simple text
string.

DateServlet sample

Shows you how to display the current date/time and how to refresh the page
automatically.

CounterServlet sample

Shows you how to use cookies to maintain a page hit counter.

SnoopServlet sample

Shows you how to retrieve and display servlet and environment information.

EJB Samples
JRun includes samples that show many different types of EJB usage. You access these
samples by reading the associated instructions and executing sample-specific make
files.

EJB sample overview

JRun provides the following EJB samples:

• Sample 1 - Getting Started

• Sample 2 - Bean Managed Persistence

• Sample 3 - Container Managed Persistence

• Sample 4 - Transactions

• Sample 5 - Object Management

• Sample 6 - Messaging

• Sample 7 - Advanced Beans

• Sample 9 - Servlets

• Sample 10 - JDK 1.1 Clients

Chapter 1: Introduction 5

Sample 1 - Getting Started

Sample 1 (described in Chapter 5) demonstrates simple communication between the
server and clients. Functionally the sample provides the ability to adjust a balance by
saving or spending, with the balance persisted over time and represented as an entity
bean. Users are authenticated and authorized to take on roles while calling methods.
The file, instance.store is used for persistence.

The Sample 1 documentation provides a detailed description of using the make files to
run an EJB sample. Additionally, this sample includes beans that illustrate how to
extend functionality.

Sample 1b uses custom beans for authentication.

Sample 2 - Bean Managed Persistence

Sample 2 (described in Chapter 6) demonstrates using bean managed persistence to a
relational database. This sample uses the same functionality as Sample 1. Access to a
relational database is required to run this sample.

Sample 3 - Container Managed Persistence

Sample 3 (described in Chapter 7) demonstrates using container managed persistence
to a relational database. This sample uses the same functionality as Sample 1.

Sample 4 - Transactions

Sample 4 (described in Chapter 8) illustrates distributed 2-phase commit transaction
management across multiple server instances. This sample uses slightly modified
functionality based on Sample 1.

Sample 5 - Object Management

Sample 5 (described in Chapter 9) illustrates distributed garbage collection
capabilities where no-longer referenced entity objects are released and garbage
collected. The sample also demonstrates creating large numbers of objects and
returning them as collections to a client as well as creating custom RMI objects.

Sample 6 - Messaging

Sample 6 (described in Chapter 10)demonstrates Java Message Service (JMS) support
with both point-to-point (message queueing) and publish/subscribe (broadcast)
mechanisms. It also illustrates JMS integration with EJB.

Sample 7 - Advanced Beans

Sample 7 (described in Chapter 11) demonstrates the use of different types of beans
(entity, stateful session, and stateless session) working together to solve a complex
business problem. This sample demonstrates the handling of deadlock exceptions and

6 JRun Samples Guide

the use of autocallers. Functionally the sample simulates the issuance of loans by
banks to customers. The number of banks, along with the interest and income rates,
are set in the deploy.properties file. The number of customers is defined at runtime
with command line arguments.

Sample 7b demonstrates the same functionality as Sample 7a but uses bean managed
persistence through a relational database.

Sample 7c demonstrates the same functionality as Sample 7a but uses container
managed persistence through a relational database.

Note There is no Sample 8.

Sample 9 - Servlets

Sample 9a (described in Chapter 12) illustrates using servlets and JSP with the EJB
engine.

Sample 10 - JDK 1.1 Clients

Sample 10a (described in Chapter 13) provides instructions on using the EJB engine
with JDK 1.1 clients.

Additional EJB information

This discussion contains additional information that will help you understand the EJB
samples.

Notes

The EJB samples run the EJB engine in standalone mode. This allows you to view bean
processing in a console window. The EJB engine runs using the port settings of the
JRun default server so the JRun default server cannot be running while you are
executing the EJB samples. For information on running the EJB samples with the JRun
default server, see “Using Make Standalone” on page 72.

References to a ‘bean’ or ‘beans’ should be interpreted as ‘Enterprise JavaBeans’.

The instance.store flat-file database is used by various samples. You should clear the
instance.store after running each sample to avoid picking up data from a prior
sample. To clear the instance.store, go to the /jrun/servers/default/runtime
directory and delete instance.store.

Notation

For the purpose of simplifying the samples, the notation /jrun is used to generically
represent the JRun installation directory. Where you see /jrun simply replace it with
the appropriate path for your installation.

Before running any samples, you must set the JRUN_HOME environment variable to the
JRun installation directory. References to /jrun and JRUN_HOME are synonymous.

Chapter 1: Introduction 7

Note The difference between /jrun and JRUN_HOME is this: /jrun is a generic
reference to the JRun installation directory; JRUN_HOME is a variable used
in the make (and makew, described below) files and this variable must
point to the JRun installation directory.

Commands

EJB samples are driven by make files that compile, package, and execute the files
necessary to create the proper sample execution environment. There are a few basic
make commands, which are outlined in Chapter 5 and discussed in detail in
Chapter 14. Batch files, similar to the make files, are provided for Windows users.
Instead of typing the make command, Windows users type the makew command, which
runs the batch files. Remember to set the JRUN_HOME environment variable before
running make or makew.

Additional Samples
Periodically check the JRun area of the Allaire DevCenter
(http://www.allaire.com/developer/jrunreferencedesk) for additional samples,
including the Tack2 sample application, which demonstrates a variety of servlet
technologies and techniques in the context of a database driven e-commerce site.

8 JRun Samples Guide

C H A P T E R 2

Chapter 2 JSP Samples

Contents

• JSP Sample Overview ... 10

• Hello World ... 10

• Color Size Bean... 10

• JavaScript Example .. 11

• QueryString Example ... 11

• HTML Form Example .. 11

10 JRun Samples Guide

JSP Sample Overview
JRun includes JSP samples to help you understand the basic concepts of JSP coding.

To get the most out of these samples, you should run them, review the source code,
and then run them again. To run the JSP samples, start the JMC and click Example
Applications from the Welcome page. You can find source code for the JSP samples in
/jrun/servers/default/demo-app/jsp.

Hello World

Description

Displays Hello World in gradually increasing and decreasing point sizes.

File name

hello.jsp

What to look for

Review the for loop and the use of JSP expressions to control increasing and
decreasing point size.

Color Size Bean

Description

Shows you to how to use methods and properties in the ColorSizeBean JavaBean.

File name

colorsize.jsp

What to look for

Review the jsp:useBean and jsp:setProperty statements. Also review the usage of
calls to methods in ColorSizeBean. You can find the source code to
ColorSizeBean.java in /jrun/servers/default/demo-app/WEB-INF/classes.

Chapter 2: JSP Samples 11

JavaScript Example

Description

Shows you how to use JavaScript (instead of Java) in a JSP page.

File name

javascript.jsp

What to look for

Note language=javascript in the page directive. Also note the use of the JavaScript
Date object and the call to the Date object’s toString method.

QueryString Example

Description

Shows you how to use the request.getParameter method to access text from the
query string.

File name

qstring.jsp

What to look for

Review how the calls to request.getParameter return size and color from the query
string.

HTML Form Example

Description

Shows you how to code a form that uses JSP.

12 JRun Samples Guide

File name

form.jsp

What to look for

Review the usage of request.getParameter and request.getParameterValues to
access form data,

C H A P T E R 3

Chapter 3 Tag Library Samples

Contents

• Tag Library Sample Overview.. 14

• Query and QueryParam ... 14

• Form, Input, and Select ... 15

• Servlet and ServletParam... 15

• Param .. 15

• ForEach ... 16

14 JRun Samples Guide

Tag Library Sample Overview
The JSP 1.1 specification includes a JSP extension mechanism known as tag libraries.
Each tag library defines a set of custom tags (also known as actions) that encapsulate
certain types of functionality. JRun includes a sample custom tag library, which you
can use in JSP pages to provide data access, form validation, servlet access, and other
types of functionality.

JRun includes tag library samples to help you understand how to use custom tags.

To get the most out of these samples, you should first review tag library
documentation, which is available from the JRun documentation page. Once you are
familiar with tag library usage, run the examples and review the JSP source code. To
run the tag library samples, start the JMC and click Example Applications from the
Welcome page. You can find source code for the tag library samples in /jrun/
servers/default/demo-app/taglib.

For information on developing tag libraries, refer to the Custom Tags and Tag
Libraries chapter in Developing Applications with JRun.

Query and QueryParam

Description

These samples show how to access a SQL database using the query and queryparam
tags.

Note To use the query tag, you must have installed a JDBC driver and used
the JMC to add your JDBC classpath to {app.classpath}.

File name

query.jsp and queryparam.jsp

What to look for

Review the syntax and sample page. By default, these samples are display-only. If you
have a JDBC data source available and a JDBC driver installed, add it to the
application classpath using the JMC, modify and uncomment the query tag, and
rerun the sample.

Chapter 3: Tag Library Samples 15

Form, Input, and Select

Description

These samples show you how to enhance interactivity by using the form, input, and
select tags.

File name

form.jsp, input.jsp, and select.jsp

What to look for

These tags allow you to create HTML forms with built-in client-side JavaScript
validation. Use the input and select tags to declare validation and error criteria. The
tags automatically generate JavaScript to perform the requested functionality. When
you display these samples, view the HTML source to see the automatically generated
JavaScript.

Servlet and ServletParam

Description

These samples show you how to invoke servlets and pass parameters.

File name

servlet.jsp and servletparam.jsp

What to look for

Note how the servletparam tag is used to pass parameters.

Param

Description

This samples shows you how to declare a JSP scripting variable.

16 JRun Samples Guide

File name

param.jsp

What to look for

Review the use of the type attribute, which specifies the data type, and the default
attribute, which specifies a default value.

ForEach

Description

This sample shows you how to code a loop.

File name

foreach.jsp

What to look for

Use the foreach tag to loop over an Enumeration.

C H A P T E R 4

Chapter 4 Servlet Samples

Contents

• Sample Servlet Overview ... 18

• JRunDemoServlet... 18

• SimpleServlet.. 18

• DateServlet ... 19

• CounterServlet.. 19

• SnoopServlet... 20

18 JRun Samples Guide

Sample Servlet Overview
JRun includes servlet samples to help you understand the basics of coding with the
servlet API.

To get the most out of these samples, you should run them, review the source code,
and then run them again. To run the servlet samples, start the JMC and click Example
Applications from the Welcome page. You can find source code for the servlet
samples in /jrun/servers/default/demo-app/WEB-INF/classes.

Note All JRun sample servlets extend the JRunDemoServlet class, which
enables the sample servlets to display a consistent look-and-feel. In
particular, note that the sample servlets call the
generateDemoPageStart and generateDemoPageEnd methods, which
are defined in JRunDemoServlet.

JRunDemoServlet

Description

Abstract class used as a base class for all JRun sample servlets. Sample servlets extend
this class and call the generateDemoPageStart and generateDemoPageEnd methods
to build HTML for the beginning and ending of each page.

File name

JRunDemoServlet.java

What to look for

Review the generateDemoPageStart and generateDemoPageEnd methods. Note how
they return HTML through the out variable. Also note how the out.println methods
integrate quoted text and object variables (such as ROW_ALT_COLOR and
TITLE_COLOR).

SimpleServlet

Description

Shows you how to set the content type and return HTML that includes a simple text
string.

Chapter 4: Servlet Samples 19

File name

SimpleServlet.java

What to look for

The servlet creates a PrintWriter through the HttpServletResponse.getWriter
method. The servlet uses this object to return HTML to the browser. Also note that
the servlet sets the content type to text/html via the
HttpServletResponse.setContentType method.

DateServlet

Description

Shows you how to display the current date/time and how to refresh the page
automatically.

File name

DateServlet.java

What to look for

The servlet creates a Date object and uses the toString method to return the current
date and time as a String. Also note that the servlet uses a URL parameter (named
mode) to implement a simple auto-refresh feature.

CounterServlet

Description

Shows you how to use cookies to maintain a page hit counter.

File name

CounterServlet.java

20 JRun Samples Guide

What to look for

The servlet retrieves all cookies into an array by calling the
HttpServletRequest.getCookies method. It then loops through the array looking
for a cookie named counter. If the counter cookie is not found, the servlet
establishes the cookie and sets its value to 1. If the counter cookie is found, the
servlet displays the current value and increments the cookie.

SnoopServlet

Description

Shows you how to retrieve and display servlet and environment information.

File name

SnoopServlet.java

What to look for

The servlet implements the following private methods to retrieve servlet and
environment data:

• getInitParameterData

• getContextParameterData

• getAttributeData

• getSessionData

• getRequestParameterData

• getRequestParametersData

• getHeaderData

• getCookieData

• getRequestData

Review these methods to see how the servlet API methods are called to retrieve data.

This servlet also features collapsible table display, which you can review in the
makeTableEntry method.

C H A P T E R 5

Chapter 5 Getting Started with EJB
Samples

Contents

• Overview ... 22

• Sample 1a - Simple Beans and Security ... 22

• How to Use Sample 1a ... 25

• Sample 1a Usage Scenarios ... 26

• Sample 1b - Custom Authentication .. 30

22 JRun Samples Guide

Overview
There are a few basic commands that are used to run every sample. These commands
are discussed in detail in Sample 1a. The notation /jrun has been used here to
generically represent the JRun installation directory. Where you see /jrun, replace it
with the appropriate path for your installation. For the purpose of simplifying the
samples, it is assumed that JRun was installed under /opt/jrun for UNIX and Linux, or
C:\Program Files\Allaire\JRun for Windows.

It is recommended that you run Sample 1a each time you reinstall JRun. This is a
simple and quick test for confirming that your environment is set up correctly.

Before You Begin
Before running any of the EJB samples, review your system configuration to ensure
that required resources are available, as follows:

• Your system must be running JDK 1.2. The EJB engine will not work with JDK
1.1.

• The directory that contains your Java compiler must be on the system path. For
example, jdk1.2.2/bin. If this directory is not on the system path, the make
jars command will fail.

• Ensure that you have defined an JRUN_HOME environment variable and that this
variable points to the JRun root.

Sample 1a - Simple Beans and Security
Sample 1a provides the ability to adjust a balance by saving or spending. The balance
is persisted over time and is represented as an entity bean. Users are authenticated and
authorized to take on roles while calling methods. The sample accesses users and roles
defined in the deploy.properties file. The default instance.store is used for
persistence.

The BalanceBean.java implements the business logic for updating the balance.
Review the Balance.properties file to see how properties for the Balance bean are
set. The deploy.properties file contains the server name along with users and their
respective roles. Also take a look at the manifest file; beans must be listed in the
manifest file in order to be deployed.

To see how the client side works, start with EjbClient.java. Notice there are no
manifest or property files required for the client. The client is authenticated through
JNDI.

To review the complete set of JavaDocs for this sample go to
/jrun/samples/sample1a/docs.

Chapter 5: Getting Started with EJB Samples 23

Running the samples

Setting the host name

The EJB engine must know where the class server is located. This is done by setting the
host property. Go to /jrun/samples/sample1a and open the deploy.properties file
using any text editor. Notice the ejipt.classServer.host property is currently set to
localhost. Change this setting to either the host name or IP address of the host. If you
are running the server and clients locally, this property can be set either to your
machine name or can remain localhost. Be sure to save any changes. If you leave this
property unspecified, JRun will default it to the name of the host where the server is
running.

Note that all clients must be able access the server with the host name or IP address
specified in the ejipt.classServer.host property. This is particularly important
when going through firewalls and across networks.

Open a shell (bash shell)

Now open a command prompt window and enter the following commands (opt/jrun
is the default JRun install directory on UNIX):

> bash
bash$ export JRUN_HOME=/opt/jrun
bash$ cd /opt/jrun/samples/sample1a

By default, these discussions use the Bourne-Again SHell (bash). The bash command
creates a bash shell for running the make files. The export command sets the
environment variable JRUN_HOME to the directory where JRun is located — in this case
/opt/jrun.

Be sure to use the forward slash (/) as the separator when working in the bash shell.
You can use another shell if you prefer. However, the bash shell is required for running
the make files verbatim.

Open a shell (DOS shell)

Under Windows, you can also use a DOS prompt window and enter the following
commands:

set JRUN_HOME=c:\Program Files\Allaire\JRun
cd "c:\Program Files\Allaire\JRun\samples\sample1a"

The set command sets the environment variable JRUN_HOME to the directory where
JRun is located — in this case c:\Program Files\Allaire\JRun.

Note The remaining examples in this manual use the bash shell. Remember
that whenever the sample specifies make, Windows users should type
makew.

24 JRun Samples Guide

Create the bean jars

You are now ready to create the jar files for the beans and the client. Enter the following
command (remember to use makew on Windows):

bash$ make jars

The make jars command compiles the EJB source files, creates the sample1a_ejb.jar
bean .jar file, and copies it to the /jrun/servers/default/deploy directory. It also
creates sample1a_client.jar for the client and copies it to the
/jrun/samples/sample1a directory.

Deploy the beans

Now you are ready to deploy the beans. Enter the following command (remember to
use makew on Windows):

bash$ make deploy

The Deploy tool generates the implementations of the home and object interfaces
using the sample1_ejb.jar created in the make jars step. The resulting
ejipt_objects.jar is placed into the deploy directory. This step also generates the
stub classes and again places the resulting ejipt_exports.jar into the deploy
directory. Make deploy then copies the deploy.properties to the deploy directory
and uses it as a base to create the runtime.properties file.

Note The make deploy command copies the sample-specific
deploy.properties file from the sample’s directory to the
/jrun/default/deploy directory. This technique is used to ensure the
integrity of each individual example. However, once work begins on your
own EJBs, you will only work with the deploy.properties file in the
/deploy directory.

The Deploy tool defaults to using the JDK 1.2 compiler to compile the generated
classes. You can use a different compiler, such as Jikes, by setting the various
ejipt.javac.* properties in the deploy.properties file.

Start the EJB engine

Once the beans have been deployed, you start the EJB engine in stand-alone mode.
Enter the following command (remember to use makew on Windows):

bash$ make standalone

When the process completes, you should see the EJB engine’s command prompt:

Server is running (type h[elp]<ENTER> for help on commands)
>

The ‘make standalone’ command starts the EJB engine using the jar files in the deploy
directory. The .jar and .properties files in the deploy directory are copied to the
runtime directory. The EJB engine is now ready to accept client requests.

Chapter 5: Getting Started with EJB Samples 25

Note The make standalone command starts the EJB engine using the
directories and port settings of the JRun default server. You must stop the
JRun default server before issuing make standalone.

Start the client

To start the client, open another command prompt window and enter the following
commands (remember to replace /jrun with your JRun install directory and to use
makew on Windows):

C:\> bash
bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample1a
bash$ make run

You will now see the client login window. Refer to How to Use Sample 1a for a
description of how to use the sample. To stop the client, press the Exit button on the
login window.

Stop the EJB engine

Once you are finished with the sample you will want to stop the EJB engine. To stop the
EJB engine, type q and press Enter. You will see output similar to the following:

>q
Server stopped

How to Use Sample 1a
Once you have both the server and the client running, you can proceed with running
the sample. Enter your host name in the client’s Server text field, this will be the same
value you set for the ejipt.classServer.host property in the deploy.properties.
Next enter “saver1” for the user and “pass” for the password and press the Login
button.

You will see a new screen containing fields for Amount and Repeat. Enter a value in the
Amount field and the number of repetitions in the Repeat field. Press the Save button.
You will see the balance changing in the server window. Try pressing the Spend button;
since you logged in as a saver you are not allowed to spend.

Now press the Logout button and login again, this time as “spender1/pass”. Since you
are now a spender, you will not be allowed to save. Logging in as “chief/pass” allows
you to save as well as spend. If you look in the
/jrun/samples/sample1a/deploy.properties file you will see the following entries
defining users and roles:

ejipt.users=spender1:pass;spender2:pass;saver1:pass;saver2:pass;
chief:pass
ejipt.roles=spender:spender1,spender2,chief;saver:saver1,saver2,chief

26 JRun Samples Guide

You can change the user names, passwords, and roles. Once you make any
modifications, be sure to run the following commands to try out your changes
(remember to use makew on Windows):

bash$ make deploy
bash$ make standalone
bash$ make run

Then restart the client by opening another command prompt window and entering the
following 4 commands (remember to use makew on Windows):

C:\> bash
bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample1a
bash$ make run

If you stop the server and then restart it again, you will notice that your balance has
been persisted. JRun is using its instance.store for persisting objects. If you would
like to start the server with no balance, then go to the
JRUN_HOME/servers/default/runtime directory and delete instance.store. Any
data stored will, of course, be lost if you do this.

Multiple clients

To create additional clients, open another command prompt and enter the following 4
commands (remember to use makew on Windows):

C:\> bash
bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample1a
bash$ make run

Sample 1a Usage Scenarios
The following sections illustrate the EJB engine running in embedded mode,
instantiated in a standard Java class, in-proc, subclassed, and in debug mode using the
Java Debugger.

Embedding the EJB engine

The EJB engine can be embedded in your application and instantiated just as any
other Java class resulting in in-proc calls between your application and the EJB engine.

Note This is an advanced topic. You should run all EJB samples before
attempting this sample. For more information on embedding the EJB
engine, refer to the JRun Advanced Configuration Guide, available from
the Allaire DevCenter.

Chapter 5: Getting Started with EJB Samples 27

To see how this can be done, change to the /jrun/samples/sample1a directory. You
will see a file named Server.java which embeds the EJB engine. Open Server.java in
any editor. You will see the following snippet, beginning on line 17:

Ejipt.prepareEnvironment(true);
Ejipt.prepareProperties(null);
final Ejipt ejipt = new Ejipt(true);
ejipt.start();
ejipt.export(0);

The Ejipt.prepareEnvironment(true); statement copies the required files,
including stubs and properties, from the /deploy subdirectory to the /runtime
subdirectory. The Ejipt.prepareProperties(null); statement then loads in
properties from the various properties files. The final Ejipt ejipt = new
Ejipt(true); creates an instance of the EJB engine. The ejipt.start(); statement
loads the remote and home objects and the ejipt.export(0); statement exports the
server. To run Sample 1a using Server, enter the following commands:

C:\> bash
bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample1a
bash$ make jars
bash$ make deploy
bash$ java -Djava.security.policy=/jrun/jrun.policy

-Dejipt.home=/jrun -classpath “.;/jrun/lib/ejipt.jar” Server

Now to start the client, open another command prompt window and enter the
following commands (remember to use makew on Windows):

C:\> bash
bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample1a
bash$ make run

The client window will appear. Enter the server name, user id and password to login,
then enter some transactions. You will see server output appear in the command
prompt window where you started Server.

Server can be viewed as a shell that runs the EJB engine in standalone mode. It’s
capabilities can be expanded to provide custom server functionality or end-to-end
application solutions.

Subclassing the EJB engine

The allaire.ejipt.Ejipt class can be subclassed by a custom server with selected
methods overridden. Again the EJB engine is running in standalone mode. To see this
illustrated, go to the /jrun/samples/sample1a directory. You will see a file named
CustomServer.java. Open the file in any editor. Just as in Server.java, you will see
the preparation steps for starting the server.

Also notice that CustomServer.java includes the CustomEjipt class, which extends
allaire.ejipt.Ejipt and that CustomEjipt overrides the logMessage and
logWarning methods. Any output will be prefixed with either “Custom Message:” or
“Custom Warning;”. These methods can be overridden to write to a log file or database.

28 JRun Samples Guide

Note This is an advanced topic. You should run all EJB samples before
attempting this sample. For more information on subclassing the EJB
engine, refer to the JRun Advanced Configuration Guide.

To run Sample 1a with CustomServer enter the following commands (remember to use
makew on Windows):

C:\> bash
bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample1a
bash$ make jars
bash$ make deploy
bash$ java -Djava.security.policy=/jrun/jrun.policy -Dejipt.home=/jrun

-classpath “.;/jrun/lib/ejipt.jar” CustomServer

To start the client open a second command prompt window and enter the following
commands (remember to use makew on Windows):

C:\> bash
bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample1a
bash$ make run

Debug mode

You can run both Server and CustomServer in the Java Debugger.

Note This is an advanced topic. You should run all EJB samples before
attempting this sample. For more information on debug mode, refer to
the JRun Advanced Configuration Guide.

To run Server or CustomServer in the Java Debugger, enter the following command
(notice “jdb” rather than “java”):

bash$ jdb -Djava.security.policy=/jrun/jrun.policy -Dejipt.home=/jrun
-classpath “.;/jrun/lib/ejipt.jar” Server (or CustomServer)

At the prompt, enter the following commands:

> stop at ejbeans.BalanceBean:39
> run

Now open another command prompt window and start up the client (remember to
use makew on Windows):

C:\> bash
bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample1a
bash$ make run

Login and perform a transaction. You will see the server stop at line 40 of BalanceBean.
Enter cont at the prompt to continue processing. To see additional commands, enter
help. See the Java Debugger documentation for addition information and commands.

Running the EJB engine in this way allows you to step through your beans, making the
debugging process very simple and straightforward.

Chapter 5: Getting Started with EJB Samples 29

Client updates

The behavior of Sample 1a can be changed so that the client receives the updated
balance. The beans to do this are included in the sample1a directory. Change to the
/jrun/samples/sample1a/client directory. You will see EjbClient.java and
EjbClient.java.new. Rename EjbClient.java to EjbClient.java.old; then rename
EjbClient.java.new to EjbClient.java.

Now go to the /jrun/samples/sample1a/ejbeans directory. Rename both
Balance.java and BalanceBean.java to old. Then rename Balance.java.new and
BalanceBean.java.new to Balance.java and BalanceBean.java respectively. To try
out this new version enter the following commands (remember to use makew on
Windows):

bash$ make jars
bash$ make deploy
bash$ make standalone

Now start up the client in another command prompt window (remember to use makew
on Windows):

bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample1a
bash$ make run

You will see the balance transactions in the client window after issuing make run with
the new version.

Dynamic bean loading

The behavior of Sample 1a can be changed so that it implements dynamic bean
loading. To do this, open the /jrun/samples/sample1a/ejbeans/BalanceBean.java
file and make a minor change, such as adding asterisks to the log messages:

public void save(final int value)
 throws RemoteException {
 _value += value;
 // Add asterisks.
 ResourceManager.getLogger().logMessage("***saving, balance is: " +
_value);
}

public void spend(final int value)
 throws RemoteException {
 _value -= value;
 // Add asterisks.
 ResourceManager.getLogger().logMessage("***spending, balance is: " +
_value);
}

Now compile BalanceBean.java and place it in the classes directory by entering the
following command (remember to use makew on Windows):

bash$ make classes

30 JRun Samples Guide

Return to the server window and enter the following command:

> load

Finally, reissue save and spend requests on the client. You will see the modified
messages, which indicate that the EJB engine is using the modified bean.

XML descriptor

The behavior of Sample 1a can be changed so that it accesses bean properties from an
XML descriptor file instead of a bean properties file and the default.properties file.
To run Sample 1a using a descriptor file, enter the following commands:

bash$ make xml_jars
bash$ make deploy
bash$ make standalone

When you use the xml_jars option, the EJB engine uses the META-INF/ejb-jar.xml
file to access bean properties.

Sample 1b - Custom Authentication
In this sample, user identities are authenticated using custom beans.
LoginSessionBean, UserBean and RoleBean have been added to the ejbeans directory.
Review them to see how authentication and authorization are done. Notice that the
user ids and passwords are no longer in the deploy.properties file.

To begin the demo, enter the following series of commands (remember to use makew on
Windows):

bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample1b
bash$ make jars
bash$ make deploy
bash$ make standalone

Now start the client in another command prompt window (remember to use makew on
Windows):

bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample1b
bash$ make run

When the client screen appears, login as described in Sample 1a. You may change the
user names, passwords and roles by modifying UserBean and RoleBean.
LoginSessionBean, UserBean and RoleBean can all be modified and extended to
provide security and authentication services using rules from a database or from a
directory service.

C H A P T E R 6

Chapter 6 Bean Managed Persistence

Contents

• Overview ... 32

• Sample 2a - Default Authentication ... 32

• Sample 2b - Custom Authentication .. 33

32 JRun Samples Guide

Overview
Sample 2 demonstrates bean managed persistence (BMP) using a relational database.
Using BMP, your entity bean manages persistence by coding the appropriate logic
(typically SQL statements) in certain callback methods.

This sample functions as in Sample 1. You will need access to a relational database to
run Sample 2.

Sample 2a - Default Authentication
To begin this sample go to /jrun/samples/sample2a/ejbeans and take a moment to
review BalanceBean.java. Notice the SQL statements in the ejbPostCreate,
ejbLoad, and ejbStore methods. The EJB engine calls these methods at specific times
in the bean’s life cycle. and the SQL statements in these methods implement
persistence for the bean. For more information on BMP, refer to the Developing
Applications with JRun manual.

Now review the following line, which you will find in each of these methods:

final Connection connection = ResourceManager.getConnection("source1");

ResourceManager is a JRun class, found in the allaire.ejipt package, that allows you
to simplify the database connection process. This line uses the
ResourceManager.getConnection method to retrieve a connection to the database.
Notice the reference to source1.

Now open the deploy.properties file to see how source1 is defined. Notice the
following entries:

ejipt.jdbcSources=source1
source1.ejipt.sourceURL=jdbc:odbc:sample
#source1.ejipt.sourceUser=xyz
#source1.ejipt.sourcePassword=pass

The ejipt.jdbcSources property defines the data sources that are available to the EJB
engine through the ResourceManager class. It can contain multiple data sources in a
comma separated list (for example, ejipt.jdbcSources=source1, source2). You can
specify data source-specific properties by using the name specified in jdbcSources as
a prefix.

The source1.ejipt.sourceURL=jdbc:odbc:sample property uses the standard Java
JDBC convention for identifying the database through a URL. This example uses the
JDBC/ODBC bridge to connect to a database named ‘sample’.

If you are using something other than the jdbc/odbc bridge, you must change the
properties to reflect that. In particular be sure to set the @host in
source1.ejipt.sourceURL if you are using the Oracle driver. Now change ‘sample’ to
the name of your database (for example, jdbc:odbc:testdb).

The next two properties are the account name and password for the database. In this
example these two lines are commented out as a result of the # in the first column. If
your database requires an account and password, remove the # from column one on

Chapter 6: Bean Managed Persistence 33

each line and change ‘xyz’ and ‘pass’ to the appropriate values. You can define any
number of data sources in this manner. Be sure to save your changes to
deploy.properties.

To run Sample 2a create a table named “account” in your database. In the account
table create the following columns:

To start the demo open a shell from the command prompt. If you are using a third-
party JDBC driver, it must be installed on the server machine. Before starting the EJB
engine you must enter the following command, being sure to provide the correct path
for the driver:

bash$ export JDBC_DRIVERS=/path/driver_name

Be sure to set JRUN_HOME with the export command and change to the /jrun/sample2a
directory. Enter the following commands (remember to use makew on Windows):

bash$ make jars
bash$ make deploy
bash$ make standalone

Now start up the client in another command prompt window:

bash$ make run

Try some transactions and then check your database. You will see an entry containing
an id and the current balance. The balance in the database will match the balance in
the console window.

Sample 2b - Custom Authentication
Currently Sample 2b, uses the same user/role authentication as Sample 1b. This
sample uses the same table that was created for Sample 2a.

To begin the demo, enter the following commands (remember to use makew on
Windows):

bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample2b
bash$ make jars
bash$ make deploy
bash$ make standalone

Sample 2 Table Schema

Column Name Column Type

id (key) INTEGER

value INTEGER

34 JRun Samples Guide

Now start up the client in another command prompt window (remember to use makew
on Windows):

bash$ make run

Again, you will see that the balance in your database equals the balance displayed by
the console.

C H A P T E R 7

Chapter 7 Container Managed Persistence

Contents

• Overview ... 36

• Sample 3a - Default Authentication ... 36

36 JRun Samples Guide

Overview
Sample 3 demonstrates Container Managed Persistence (CMP) using a relational
database. With CMP, the EJB engine manages entity bean persistence using the data
source and SQL statements defined in the bean properties file or deployment
descriptor.

This sample’s functionality is the same as Sample 2. The option of modifying the
sample to use the instance.store is also provided. See the description at the end of
Sample 3a on how to do this.

Sample 3a has been tested with Oracle using the Thin JDBC driver. It has also been
tested with SQLServer using the stock JDBC/ODBC bridge.

Sample 3a - Default Authentication
This sample uses the same database definition as Sample 2a. If you have not already
done so, review Sample 2a for information on creating the required database tables.

Start by reviewing the deploy.properties file in /jrun/samples/sample3a/. Notice
that there are properties defining the JDBC source,. These properties default to using
the JDBC/ODBC bridge. Be sure to update the ejipt.jdbcSources,
ejipt.sourceURL, source1.ejipt.sourceUser, and
source1.ejipt.sourcePassword property settings as necessary for your environment.
In particular be sure to set the @host in source1.ejipt.sourceURL if you are using the
Oracle driver.

The ejipt.logSQLRequests=true property will cause all SQL calls to be displayed in
the log window. This feature can be useful during debugging but should be set to false
in production environments. Now review Balance.properties in
/jrun/samples/sample3a/ejbeans, which contains the CMP properties.

The first property is ejb.containerManagedFields=_id,_value, telling the EJB
engine that the _id and _value fields are to be managed by the container. The
existence of this property notifies the EJB engine that there are container managed
fields. This property must be set for the container to manage persistence for the bean.

The ejipt.*SQL* properties define how the EJB engine stores and retrieves the data in
the bean. In this sample there are properties for postCreate (ejipt.postCreateSQL),
load (ejipt.loadSQL), and store (ejipt.storeSQL). These properties are used by the
container to properly manage the bean instance’s state. There is no need for a
createSQL since the argument is the primary key and requires no validation.

Note The ejipt.postCreateSQL property uses the create_balance database
stored procedure to perform insert processing. The /jrun/samples
directory includes files you can use to define this stored procedure for
your DBMS. Use sqlserver.sql file to define the stored procedure for
SQL Server and oracle.sql to define this stored procedure for Oracle.

A complete description of the SQL properties can be found in the container managed
persistence discussion of Developing Applications with JRun. Now review

Chapter 7: Container Managed Persistence 37

BalanceBean.java in /jrun/samples/sample3a/ejbeans. You will notice less code
than in the corresponding Sample 2a BalanceBean.java. Notice in particular the
ejbPostCreate, ejbLoad, and ejbStore methods. All SQL-related references have
been removed.

Now run the sample by entering the following commands, replacing /jrun with the
correct directory:

bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample3a

If you are using a third-party JDBC driver you must enter the following command,
being sure to provide the correct path for the driver:

bash$ export JDBC_DRIVERS=/path/driver_name

Then enter the following commands (remember to use makew on Windows):

bash$ make jars
bash$ make deploy
bash$ make standalone

Now start up the client in the second command prompt window (remember to use
makew on Windows):

bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample3a
bash$ make run

Now as you use the sample you will see that values are persisted between sessions.

Using the instance.store

To run Sample 3 using instance.store rather than a database, comment out the
ejipt.*SQL* properties from the Balance.properties file. Be sure to leave the
ejb.containerManagedFields=_id,_value property in place, telling the server that
the _id and _value fields are to be managed by the container. Then in the
deploy.properties file uncomment the ejipt.storeName=default line and
comment out the ejipt.jdbcSources=source1 line. After making these changes, you
must issue make jars, make deploy, make standalone, and make run to run the
sample (remember to use makew on Windows).

38 JRun Samples Guide

C H A P T E R 8

Chapter 8 Transactions

Contents

• Sample 4a - Distributed Transactions .. 40

• Sample 4b - Transactions and CMP.. 43

40 JRun Samples Guide

Sample 4a - Distributed Transactions
Sample 4a illustrates the use of distributed 2-phase commit transaction management
using server1 and server2. The sample also uses both client demarcated, and
container managed transactions as illustrated by the implementations of the save and
spend methods in EjbClient.java and BalanceBean.java.

First open the Balance.properties files and note the following properties:

• save.ejb.transactionAttribute=tx_mandatory indicates that a transaction
must already be running when the save method is called. In this sample, the
EjbClient.java program’s save method manages the transaction.

• spend.ejb.transactionAttribute=required indicates that the EJB engine
will start a transaction if a transaction does not currently exist when the spend
method is called.

Now review the deploy2.properties file in /jrun/samples/sample4a. The
deploy2.properties file will be used by server2. Notice the following entries:

sample4a.BalanceHome.maxValue=1000
sample4a.BalanceHome.minValue=-1000

These 2 properties specify a valid range for balances that cannot be less than -1000 and
cannot exceed 1000 in server2. If the minimum or maximum is hit, an exception will
be thrown. Server2’s BalanceBean checks the balance against the values set in the
properties file. Hitting the limits in server2 will result in an exception. This exception
will force server1 to also roll back the transaction.

For more information, refer to the Developing Applications with JRun manual.

Customization of the JNDI Context

First we will customize the JNDI context to make our calls simpler and easier to
understand. Go to /jrun/samples/sample4a/client and open EjbClient.java. You
can see in the login method where the client sets a context reference for the server
listening on port 2323 (server1). The client then sets a context reference for the server
listening on port 2324 (server2) and binds sample4a.BalanceHome to BalanceHome2.
This is done as a convenience to easily differentiate sample4a.BalanceHome for
‘server1’ and sample4a.BalanceHome for ‘server2’ as illustrated in the following
diagram.

Chapter 8: Transactions 41

Client Demarcated Transactions

Next, take a look at the save method in EjbClient.java. The save method will take
the responsibility for updating the balance in both server1 and server2. Notice that
save creates 2 instances of Balance, one associated with each server, and then does a
transaction.begin. This is required as a result of the
save.ejb.transactionAttribute=tx_mandatory entry in the Balance.properties
file.

The EjbClient.save method then calls save(amount) for both instances of Balance. If
either call results in an exception, the transaction is rolled back and the balance will
not be updated on either server, otherwise transaction.commit is called. Therefore, if
the balance minimum or maximum in server2 is hit, transaction.rollback is called.
As a result server1 and server2 will remain in sync.

Implicit Transactions

Now examine the spend method in EjbClient.java. Whereas the EjbClient.java
save method called BalanceBean.save for each server, the EjbClient.java spend
method calls BalanceBean.spend once. That is because BalanceBean.spend looks for
another registered BalanceBean. If it finds one, it makes a call to that
BalanceBean.spend method.

Next take a look at the spend method in /jrun/samples/sample4a/ejbeans/
BalanceBean.java. The spend method updates its balance, but it is also responsible
for updating the balance in server2 as illustrated with the following snippet:

if (_balance2 != null)
{

_balance2.spend(value);
}

server1

BalanceBean

server2

BalanceBean

sample4a.BalanceHome

sample4a.BalanceHome

client

JNDI Context
sample4a.BalanceHome

BalanceHome2

42 JRun Samples Guide

To understand how server1 knows about server2, first review the
BalanceBean.connect method. You will see the following:

try
{

final Properties environment = _context.getEnvironment();
final String host = environment.getProperty

(EjiptProperties.CLASS_SERVER_HOST);
final int port = Integer.parseInt

(environment.getProperty("balance2Port"));
final Properties properties = new Properties();
properties.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"allaire.ejipt.ContextFactory");
properties.setProperty(Context.PROVIDER_URL,

"ejipt://" + host + ":" + port);
final BalanceHome home = (BalanceHome)(new InitialContext

(properties)).lookup("sample4a.BalanceHome");
_balance2 = home.create(123);

}
catch (NumberFormatException format)
{

// no port info, connecting is not necessary
}
catch (Exception exception)
{
 ResourceManager.getLogger().logException
 ("Failed to contact other server", exception);
}

This code is checking the associated deploy.properties file for a property with the
name balance2Port. If you look at deploy.properties in /jrun/samples/sample4a
you will find the following entry:

sample4a.BalanceHome.balance2Port=2324

It then calls getBalance2, which returns a reference to the BalanceHome in server2.
Now if you look at the BalanceBean.getBalance2 method you will see that it simply
obtains a reference to the BalanceHome for the server listening on port 2324 (previously
referred to as server2).

Chapter 8: Transactions 43

Multiple Server Instances

The make files use the ejipt.ejbDirectory property to specify /deploy and /runtime
directories for the second server instance. If you have run other samples, be sure to
delete the instance.store from the /runtime directory before running this sample.

To run the sample, open a command prompt and start a shell. For this sample you will
need to start RMID. Set your environment variables and enter the following
commands (remember to use makew on Windows):

bash$ make jars
bash$ make deploy2
bash$ make start2.

The make deploy2 and make start2 commands deploy and start both servers. Now
start a client by issuing a make run. When you are finished with the sample issue a make
stop2 to stop both servers. Be sure to delete the /jrun/servers/default/runtime/
instance.store before moving on to the next sample.

Sample 4b - Transactions and CMP
Sample 4b illustrates container managed persistence and uses the transaction
management features of Sample 4a. For a complete description of the functionality,
see the description for Sample 4a.

This sample uses a relational database. (For the schema, see Sample 2 in Chapter 6).
Also be sure to set the database properties in the deploy.properties file.

To run the sample, open a command prompt and start a shell. (Be sure to start RMID
since this sample runs in fail-safe mode.) Now go ahead and run the sample by
entering the following commands, replacing /jrun with the correct directory
(remember to use makew on Windows):

server1

BalanceBean

server2

BalanceBean

client

save (step2)

save (step1)

spend (step1)

spend (step2)

44 JRun Samples Guide

bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample4b
bash$ make jars
bash$ make deploy2
bash$ make start2

The make deploy2 and make start2 commands deploy and start both servers. Now
start a client by issuing a make run. When you are finished with the sample issue a make
stop2 to stop both servers.

C H A P T E R 9

Chapter 9 Object Management

Contents

• Overview ... 46

• Sample 5a - Dynamic Object Release ... 46

• Sample 5b - Custom RMI Sockets ... 47

• Sample 5c - Large Enumerations .. 48

46 JRun Samples Guide

Overview
Sample 5 focuses on scalability of the server, customization opportunities, and the
handling of large numbers of EJB objects.

Note Due to the different performance and garbage collection (GC)
characteristics of the stock JDK vs. HotSpot, the results of the following
samples will vary.

Sample 5a - Dynamic Object Release
Using an auction paradigm, Sample 5a illustrates the dynamic release of entity objects
and overall resource management. As with any auction, there are Bidders that make
Bids on available Products.

Products keep a reference to the best Bid. Products can be sold for the best (highest)
Bid after a minimum of four Bids have been received. Bidders track their own best
bargain; the product that was purchased for the lowest price. However, since product
selection and price are randomly generated, it is not guaranteed that all Bidders will
successfully purchase a product.

Once you start the sample, the server will create 10,000 Bidders and 10,000 Products.
The number of Bidders and Products can be easily customized by changing the
following properties in the Manager.properties file:

numProducts=10000
numBidders=10000

The client will begin generating random Bids on Products. Once a batch of Bids have
been generated, they are sent to the server for processing.

Bids are processed by the Manager in batches. For each batch the Manager applies
each Bid in the batch to the associated Product, then goes through all of the Products
to determine which have received enough Bids (at least 4) and can be sold. Those
Products that have at least 4 Bids are sold.

To view the code that implements this logic, open the following files in a text editor:

• /jrun/samples/sample5a/ManagerBean.java

• /jrun/samples/sample5a/BidBean.java

• /jrun/samples/sample5a/BidderBean.java

• /jrun/samples/sample5a/ProductBean.java

Now start the sample. Be sure to change any necessary host information in the
deploy.properties file. Enter the following commands, replacing /jrun and
hostname as necessary for your environment (remember to use makew on Windows):

bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample5a

Enter the following commands to deploy the beans and start the server (remember to
use makew on Windows):

Chapter 9: Object Management 47

bash$ make jars
bash$ make deploy
bash$ make standalone

Now start up the client in another command prompt window:

bash$ make go host=hostname size=1000

The size=1000 parameter indicates the batch size, the number of bids to be processed
in a batch. Changing this parameter will cause batches to be processed more or less
frequently for a given auction.

The server will process about 50,000 Bids by running the sample with 10,000 Bidders
and 10,000 Products, bringing the total processed entity objects to approximately
70,000. When all products have been sold, the Manager goes through all of the Bidders
to determine the time of the best bid. If there was no best bid, then the count of
Bidders with no purchases is increased by 1.

De-referenced EJB objects (Bids) are continuously garbage collected during the
exercise. The Bids left active will likely be the ones referenced by the Bidders through
the purchased products. During the reporting phase of the sample, these active Bids do
not have to be reloaded, thus minimizing the number of required ejbLoads().

The sample does not use any databases for persistence. However, it is a simple exercise
to add persistence using either CMP or BMP. Since Bids are generated very frequently,
indexing Bid tables is not recommended. This restriction, of course, increases the
desirability of minimal ejbLoads() even further.

The sample was not designed for the client to be restarted. If you want to rerun the
sample you must restart the server to ensure a clean environment.

Sample 5b - Custom RMI Sockets
Sample 5b demonstrates customizing RMI sockets in standard ways by providing a
ServerSocket with a customized backlog parameter. This sample could be easily
extended to provide custom streams as well as SSL sockets. Third-party standard
customizations or products may be used just as easily.

Before starting the sample be sure to change any necessary host information in the
deploy.properties file. Enter the following commands, replacing /jrun and
hostname as necessary for your environment:

bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample5b

Now enter the following commands (remember to use makew on Windows):

bash$ make jars
bash$ make deploy
bash$ make standalone

Now start up the client in another command prompt window (remember to use makew
on Windows):

bash$ make go host=hostname count=10

48 JRun Samples Guide

The backlog parameter for ServerSockets defaults to 50. If a connection indication
arrives when the queue is full, the connection is refused. The count=10 indicates the
number of simultaneous connections to make to the server.

If you now rerun the sample with more simultaneous connections than the backlog
queue can accommodate you will encounter errors:

bash$ make go host=hostname count=150

To prevent these errors go to the Product.properties file and uncomment the 2
socket factory properties and then enter the following commands (remember to use
makew on Windows):

bash$ make jars
bash$ make deploy
bash$ make standalone

Now start up the client in another command prompt window (remember to use makew
on Windows):

bash$ make go host=hostname count=350

You will see that the backlog queue has been expanded to handle the 350 simultaneous
connections. Although it is unlikely that the server would encounter 350 connection
requests arriving at the exact same moment, you can use this type of customization to
prevent connections from being refused when there are spikes in activity.

Sample 5c - Large Enumerations
This sample demonstrates returning a large Enumeration of Bids to the client. The
client then iterates through the bids to get the price. The sample illustrates how objects
are garbage collected once a client is no longer referencing them.

Review the ejbFindAll method and the KeyEnumerator inner class in BidBean.java.
Also review the EjbClient.java class and notice how the run method includes code
that calls the EJB’s FindAll method to return an Enumeration of Bids.

Before starting the sample be sure to change any necessary host information in the
deploy.properties file. Enter the following commands, replacing /jrun and
hostname as necessary for your environment:

bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample5c

Now enter the following commands (remember to use makew on Windows):

bash$ make jars
bash$ make deploy
bash$ make standalone

Now start up the client in another command prompt window (remember to use makew
on Windows):

bash$ make go host=hostname size=1000

The size=1000 parameter indicates the size of the Enumeration to be returned by the
server to the client.

C H A P T E R 1 0

Chapter 10 Messaging

Contents

• Overview ... 50

• Sample 6a - Point-to-Point .. 50

• Sample 6b - Publish/Subscribe... 53

• Sample 6c - EJB Integration... 54

50 JRun Samples Guide

Overview
Sample 6 highlights the features of the Java Message Service (JMS). The features
illustrated include point-to-point (queues) and publish/subscribe (topics) messaging.

Note The Multicast Time-To-Live property (jms.multicast.ttl) is set to zero,
which will prevent UDP packets from being forwarded to remote clients.
To use the following samples with remote clients, set the
jms.multicast.ttl, jms.multicast.port, and
jms.multicast.groupAddress properties in the deploy.properties file
to the correct values for your environment.

These samples use the instance.store for persisting messages. You should remove
the instance.store from the /runtime directory before running each sample.

For more information on using JMS, refer to Developing Applications with JRun.

Sample 6a - Point-to-Point
Sample 6a illustrates point-to-point or queue-based messaging services. The sample
demonstrates synchronous messaging where messages are written to a queue, the
queue is then polled for messages. Asynchronous messaging, where listeners register
to automatically receive messages, is also demonstrated.

Start by reviewing the /sample6a/deploy.properties file. To enable messaging, set
the ejipt.enableMessaging property to true. This notifies the EJB engine to load the
messaging related beans. If this property is not set to true, messaging will not work.

Also notice the following property setting:

default.MessageQueueHome.ejb.enterpriseBeanClassName=ejbeans.QueueBean

This tells JRun that ejbeans.QueueBean is to be used for persisting messages rather
than the default.MessageQueueBean. Taking a look at
/sample6a/ejbeans/QueueBean.java you will see that it implements the onAdding
and onRemoved methods. The onAdding method is called just prior to adding the
message to the queue whereas onRemoved is called just after the message is removed
from the queue. This enables the sample to write entries to the JRun log file. Your
applications can optionally extend MessageQueueBean to implement similar
functionality, but it is not typically required.

Chapter 10: Messaging 51

There are two client side applications: Sender and Receiver. First review Sender by
going to /sample6a/client/Sender.java. Sender accepts four arguments, as
described in the following table.

Reviewing Sender.java you will see that Sender must first get a reference to a
QueueConnectionFactory and with that get a QueueConnection. With the connection
established it can go ahead and create a QueueSession. Only then can it begin to send
messages. Sender also creates the actual message queue using the queue name
parameter.

To generate and send an actual message, Sender calls Message.setText with the text,
and then calls QueueSender.send with the message, delivery mode, priority and the
time interval until expiration.

Now go to /sample6a/client/Receiver.java to see how messages can be retrieved.

Receiver accepts three arguments, as described in the following table.

Receiver must also get a reference to a QueueConnectionFactory and with that get a
QueueConnection and then create a QueueSession. This time, rather than creating an
sender, a QueueReceiver is created. When mode is auto, Receiver registers as a

Sample 6a Sender Arguments

Parameter Value

host Specifies the host name of the server or ‘localhost’ if the server and
Sender are running locally.

queue name Identifies the queue that messages will be sent to.

mode Indicates whether Sender will automatically generate a series of
messages. Values: manual or auto.

name Specifies the name that identifies the sender.

Sample 6a Receiver Arguments

Parameter Value

host Specifies the host name of the server or ‘localhost’ if the server and
Receiver are running locally.

queue name Identifies the queue from which messages will be retrieved.

mode Indicates if the receiver will manually retrieve messages from the queue
(synchronous) or if it will register itself as a listener to automatically
receive messages (asynchronous). Values: ‘manual’ or ‘auto’.

52 JRun Samples Guide

listener for the queue (asynchronous). Otherwise the queue is checked each time the
Enter key is pressed (synchronous).

To run the sample, start by bringing up the server by entering the following
commands. Ignore the No beans found in jar(s) message Remember to use makew
on Windows:

bash$ make jars
bash$ make deploy
bash$ make standalone

Next open a new shell and start the Sender by entering the following command
(remember to use makew on Windows):

bash$ make sender host=localhost queue=cat mode=manual name=fluff

You will see output similar to the following:

Type message to send or ’quit’ to exit, then press <ENTER>

Now type in some text and hit Enter. You will see the following:

Sending: [delivery: non-persistent, priority: default, from: fluff]
Content: <your text here>
Type message to send or ’quit’ to exit, then press <ENTER>

You can prefix messages with :dp to specify that DeliveryMode is persistent when
sending messages:

:dpmessage text

In this case the message will survive a server shutdown. Messages are persisted by
QueueBean using the instance.store. This can be tested by sending messages,
stopping and starting the server and then starting Receiver. Keep in mind that the
message’s default time-to-live is set to 5 minutes in Sender, therefore a message could
expire before being delivered.

You can also set the message’s priority by prefixing messages with :pX where X=0
through 9 with 9 being the highest priority. Messages with higher priority are delivered
before messages of a lower priority.

:p9message text

You can try this by sending several messages with varying priority. Then do a series of
receives, you will receive the messages in order of highest to lowest priority.

By starting the sender with mode=auto, a series of messages will automatically be
generated and sent out (remember to use makew on Windows):

bash$ make sender host=localhost queue=cat mode=auto name=fluff

Now open a new shell and start the Receiver by entering the following command
(remember to use makew on Windows):

bash$ make receiver host=localhost queue=cat mode=manual

You will then see the following output:

Press <ENTER> to receive message or enter ’quit’ to exit

Now press Enter to retrieve your messages:

Chapter 10: Messaging 53

Received: [delivery: non-persistent, priority: -1, from: fluff]
Content: <your text here>
Press <ENTER> to receive message or enter ’quit’ to exit

For the Receiver you can enter :wXXX on the command line where XXX represents the
number of seconds the receiver will wait for new messages. The Receiver will wait for
the number of seconds specified or until a message arrives, whichever comes first.

By starting Receiver with mode=auto, it will receive asynchronous messages, no
polling is necessary. In this case Receiver must register as a listener of the queue.
Any messages that may already be on the queue at the time Receiver registers as a
listener will not be sent to Receiver since Receiver was not registered as a listener at
the time the message was produced.

Sample 6b - Publish/Subscribe
Sample 6b demonstrates publish/subscribe (topic-based) messaging support. With
topics, all Subscribers who have registered will receive the message provided that the
message has not expired. Messaging priority and persistence can be specified using
the same prefixing as described in Sample 6a.

Examine the /sample6b/client/Publisher.java file’s run method to see how the
sample uses the publish method to publish messages to the topic. Review the
/sample6b/client/Subscriber.java file’s onMessage method to see how the sample
displays received messages.

To run the sample, bring up the server by entering the following commands. Ignore the
No beans found in jar(s) message. Remember to use makew on Windows:

bash$ make jars
bash$ make deploy
bash$ make standalone

Now you must start some Subscribers so that they will be registered as listeners before
Publisher begins to send messages. A registered listener will only receive messages that
are new to the topic. Messages already in the topic will not be sent to a newly registered
listener.

Open a new shell and enter the following command. Do this for at least two
Subscribers (remember to use makew on Windows):

bash$ make subscriber host=localhost topic=dog mode=auto

Next open a new shell and start a Publisher by entering the following command
(remember to use makew on Windows):

bash$ make publisher host=localhost topic=dog name=spot

As you send the messages you see that the Subscribers automatically receive the
messages. When using auto mode Subscribers will only receive messages that are
published while the subscriber is active.

When starting subscriber in manual mode you can retrieve any messages that are
currently in the message buffer. To set the size of the buffer set the
jms.messageCapacity property.

54 JRun Samples Guide

Topics can be hierarchical in nature. To see how this works take a look at
/sample6b/ejbeans/TopicBean.java. There you will see the method
ejbFindSuperTopics. This method looks for other topics that have the same prefix.
For example if you have the topics dog and dog.lab then dog is the super topic and
dog.lab is the subtopic. Therefore subscribers of dog will also see dog.lab messages but
dog.lab subscribers will only see dog.lab messages and will not see dog messages.
Subscribers of dog.lab would however see messages to dog.lab.black. TopicBean.java
can be easily customized to follow topic conventions specific to your environment.

Sample 6c - EJB Integration
Sample 6c demonstrates the ability for EJBs to fully participate and interact with the
JRun JMS implementation. The client will produce an initial message that will result in
a chain of messages being produced and consumed by beans on the server with a final
message being consumed by the originating client.

To understand how this works, start by examining Client.java in
/sample6c/Client.java. In the constructor method you will see where, after
establishing a connection and a session, the client will create 100 queues named “1”
through “100”. It will also create 100 instances of the ListenerBean entity bean and
finally will register itself as a listener for the queue named “100”.

In the Client.run method a message is sent to queue “0” and then the method waits
until the onMessage method is executed. Notice that Client implements the
MessageListener interface and must therefore implement the onMessage method.
The onMessage method will be called when a message is forwarded to queue “100”.

To see how the chaining is implemented let’s review Listener. First go to
/sample6c/ejbeans and open the Listener.properties. Notice here that the
ejipt.maxContexts property is set to “10”, meaning that the number of active bean
instances cannot exceed 10. Therefore instances will be activated and passivated as
necessary while the sample is running. The instance.store is used for persistence.

client

Queue "0"

Queue "1"

Queue "2"

Queue "100"

server

Connection

Bean 0

Bean 1

Bean 2

Bean 99

Chapter 10: Messaging 55

Next lets take a look at ListenerBean.java. In the setEntityContext method we
check to see if this is the first instance, if so we bind the connection in the JNDI context
so that all instances of Listener can use the same connection.

Since the Listener object (Listener.java) extends MessageListener, we must
provide an implementation of the onMessage method in ListenerBean.java. This
method is responsible for forwarding the message to the next queue.

Now run the sample. Enter the following commands to start the server (remember to
use makew on Windows):

bash$ make jars
bash$ make deploy
bash$ make standalone

Now start the client by entering the following command (remember to use makew on
Windows):

bash$ make go host=localhost

When running the sample you will see the following output on the server:

>[object:0] forwarding message...
>[object:1] forwarding message...
>[object:2] forwarding message...
.
.
.
>[object:99] forwarding message...
>

And you will see the following output on the client:

Received: 100

When the chain is complete, the Client.run method removes the Listener instances
from the instance.store and closes the Receiver, Sender, Session, and Connection.

56 JRun Samples Guide

C H A P T E R 1 1

Chapter 11 Advanced Beans

Contents

• Overview ... 58

• Beans ... 58

• Process .. 59

• Deadlocks ... 60

• Sample 7a - Complex Processing .. 60

• Sample 7b - Complex Processing with BMP .. 61

• Sample 7c - Complex Processing with CMP .. 62

• Prepared Statements.. 63

58 JRun Samples Guide

Overview
Sample 7 illustrates the use of entity beans, stateful session beans and stateless session
beans all working in conjunction with one another. This sample also demonstrates
deadlock exception handling and autocallers.

This sample uses a command line entry to start a client process. The sample is
designed to demonstrate how different beans can interact with one another.
Information is set at runtime through properties and command line arguments.
Output is written to the console window. Data is persisted to the instance.store. This
application can easily be used as a framework for real world distributed applications.

The functional description of the business logic is fairly straightforward. Banks loan
money to certain Customers and then those Customers must repay the Loans within a
preset time period. If the Loan is not repaid during the allotted time period the Loan
defaults.

Banks earn income by charging interest on the Loans to Customers. The types of Banks
range from conservative to risky. Customers have some initial worth (inheritance) and
this worth accrues over time as a result of income. The income amount is determined
as a percentage of their current worth. Customers may borrow additional money to
temporarily increase their worth, but can only have one loan outstanding at any time.
The types of Customers range from conservative (those that borrow less) to risky
(those that borrow more). Customers also have credit ratings that start out neutral and
are adjusted as Loans are either paid or defaulted.

There is a Web entity bean that represents the universal source of information. Web can
be browsed for the list of Banks, as well as for both the current interest rate and income
rate. Customers use Web to locate Banks. Banks use Web to determine the current
interest rate. The interest rate and income rate are set in the Web.properties file.

CustomerSession is a stateful session bean manages a session for each Customer
entity bean and updates the Customer’s worth at defined intervals. Loan is a stateful
session bean that represents each loan for the duration of its existence, once a Loan
instance is paid or defaulted the loan instance expires and is removed. Calculator is a
stateless session bean used to calculate the amount of each installment for a specific
Loan.

Beans
The following table lists the beans used in this sample. To review the JavaDocs for this
sample go to /jrun/samples/sample7a/docs.

Sample 7 Table Schema

Bean Type

Bank Entity

Customer Entity

Chapter 11: Advanced Beans 59

Process
When starting the server, the number and types of banks defined in the
deploy.properties file are created. The server also initializes the Web with the
current interest and income rates.

When starting a client, arguments are passed that indicate the host name and port,
and the number of Customers along with their initial worth. Customers randomly
begin asking for loans and Web randomly selects banks that can provide the loans.

The Customer then asks the Bank for a Loan, the Bank in turn determines if it wants to
loan money to that Customer. The decision criteria is based on the availability of Bank
funds and the Customer’s credit rating. Once a Loan is created by the Bank, the
Customer uses the calculator to determine the amount of the installment payments.

Once a loan application has been approved, the created Loan must be paid back.

The Customer sends the payment to the Loan, the Loan then passes the payment
amount to the Bank to be added back into the Bank’s available funds. For each Loan, the
Customer is scheduled to make 10 payments. If the Loan defaults, the Customer’s credit
rating is adjusted (by the Loan) before the Loan is removed.

Web Entity

Loan Stateful Session

CustomerSession Stateful Session

Calculator Stateless Session

Sample 7 Table Schema (Continued)

Bean Type

Customer Web Bank Loan Calculator

Loan origination process

Customer Loan Bank

Loan payment process

60 JRun Samples Guide

Deadlocks
Sample 7 was designed to illustrate a deadlock-prone situation and how the EJB engine
detects and breaks deadlocks. The Loan lives only for a certain fixed period of time. If
the Customer does not pay the Loan in time, the Loan is defaulted, even when the
Customer is still paying installments. If the Loan has not been fully repaid at the time it
expires, the Loan downgrades the Customer’s credit rating in Loan.ejbRemove.
However, if the Loan is trying to downgrade the credit rating at the same time the
Customer is trying to pay the Loan, a deadlock situation may occur.

There are two places in the sample where deadlocks are managed.
DeadlockExceptions are declared as checked exceptions in the throws clause of the
LoanBean.payInstallment method. This forces the EJB engine to throw deadlock
exceptions unchanged. Without these declarations the exceptions would be wrapped
into java.rmi.RemoteExceptions.

DeadlockExceptions are caught in the CustomerBean.payInstallment method and
ignored. As a result, a call attempting to update the Customer’s credit rating will
eventually go through so the Loan can be defaulted and removed. The next time the
customer tries to pay the Loan, a NoSuchObjectException is caught and the Customer
now knows the Loan has expired and ceases payments.

Sample 7a - Complex Processing
Before starting Sample 7a, take a moment to review the source files located in /jrun/
samples/sample7a. To begin, go to the /sample7a/ejbeans directory and open the
Web.properties file. Set the interest rate and income rate, if you so desire. Also be sure
to change any necessary host information in the deploy.properties file.

Next, start up a shell as described in Sample 1 (described in Chapter 5), set the
JRUN_HOME variable and change to the /jrun/samples/sample7a directory.

Now go ahead and start the demo by entering the following commands (remember to
use makew on Windows):

bash$ make jars
bash$ make deploy
bash$ make standalone

Now start up the client in another command prompt window. To start the client enter
the following command (remember to use makew on Windows):

bash$ make simulate host=localhost first=0 last=10 inheritance=1000

This command will cause the server to create 11 concurrent Customers with id’s 0
through 10. If you have changed the server port to something other than 2323, for
example 2324, you would enter the following command (remember to use makew on
Windows):

bash$ make simulate host=hostname:2324 first=0 last=10 inheritance=1000

Now that you have run the simulation, try running it again, this time entering
additional customers or changing the inheritance amount.

Chapter 11: Advanced Beans 61

Running with 100 Customers will result in 1000 Loans and approximately 10,000
payments (depending on the ejb.sessionTimeout setting for Loan durations in
Loan.properties). Try running with 1000 customers. Also try running an additional
client by opening another command window and entering the following (remember to
use makew on Windows):

bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample7a
bash$ make simulate host=localhost first=200 last=210
inheritance=1000

Review the Sample 7a JavaDoc style documentation for additional information, it can
be found in /jrun/samples/sample7a/docs.

Sample 7b - Complex Processing with BMP
Sample 7b adds bean managed persistence using a relational database to Sample 7.
You will need access to a relational database to run Sample 7b.

Sample 7b has been tested with Oracle using the Thin JDBC driver. It has also been
tested with SQLServer using the stock JDBC/ODBC driver.

The SQL scripts included in the /jrun/samples directory can be used to load the
database schemas used by Sample 7b. Both Oracle and SQLServer versions are
provided. The following table defines the schema used in Sample 7b:

Sample 7b Schema

Table Field JDBC Type Rules

account id INTEGER NOT NULL

value INTEGER NOT NULL

bank name VARCHAR (16) NOT NULL

type INTEGER NOT NULL

funds FLOAT NOT NULL

loans FLOAT NOT NULL

customer name VARCHAR (16) NOT NULL

password VARCHAR (16) NOT NULL

type INTEGER NOT NULL

rating INTEGER NOT NULL DEFAULT 0

worth FLOAT NOT NULL

62 JRun Samples Guide

To begin this sample, go to /jrun/samples and open the appropriate .sql file for your
database. These files contains table definitions as well as create_customer, a stored
procedure for creating customers in the database. You must create the tables and
install the stored procedure to run the sample.

Now review deploy.properties in /sample7b. Notice there are properties defining the
JDBC source that are currently set up to use the JDBC/ODBC bridge. Be sure to update
the ejipt.jdbcSources, ejipt.sourceURL, source1.ejipt.sourceUser, and
source1.ejipt.sourcePassword property settings as necessary for your environment.
In particular be sure to set the @your_host in source1.ejipt.sourceURL if you are
using a third-party driver.

Now review BankBean.java in /sample7b/ejbeans. You will notice SQL related
references in the ejbPostCreate, ejbLoad, and ejbStore methods.

To begin the sample, go to the /sample7b/ejbeans directory and open the
Web.properties file. You may set the ‘interest rate’ and ‘income rate’. Be sure to
change any necessary host and JDBC information in the deploy.properties file.

Now start the sample. Enter the following commands, replacing /jrun as necessary for
your environment:

bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample7b

If you are using a third-party JDBC driver, you must enter the following, being sure to
provide the correct path for the driver:

bash$ export JDBC_DRIVERS=/path/driver_name

Now enter the following commands (remember to use makew on Windows):

bash$ make jars
bash$ make deploy
bash$ make standalone

Now start up the client in another command prompt window (remember to use makew
on Windows):

bash$ make simulate host=hostname first=0 last=10 inheritance=1000

Sample 7c - Complex Processing with CMP
Sample 7c takes the applications used in Sample 7 and adds container managed
persistence to a relational database.

handle VARBINARY (128) NULL DEFAULT NULL

installment FLOAT NOT NULL

Sample 7b Schema (Continued)

Table Field JDBC Type Rules

Chapter 11: Advanced Beans 63

Sample 7c uses the same database schema as Sample 7b. For the schema as well as
additional information on JDBC drivers, see Sample 7b.

If you did not create the tables described in Sample 7b, then you should do so now.
Sample 7c uses the same tables as Sample 7b. Also be sure to set the JDBC properties in
/sample7c/deploy.properties.

If you will now take a look at Bank.properties in /sample7c/ejbeans/, you will see
the CMP properties. The first property is ejb.containerManagedFields, telling the
container the fields to be managed by the container. The Customer.properties file
also contains CMP properties.

The ejipt.*SQL* properties define how the data in the bean is stored and retrieved.
You will notice that in this sample there are properties for create, load and store.
These properties are used by the corresponding ejb methods to properly manage the
bean instance’s state.

Now let us review the BankBean.java in /sample7c/ejbeans. You will notice less code
than in the corresponding Sample 7b BankBean.java. Notice in particular the
ejbPostCreate, ejbLoad, and ejbStore methods.

To begin the sample, go to the /samples/sample7c/ejbeans directory and open the
Web.properties file. Reset the interest rate and income rate, if desired. Be sure to
change any necessary host and JDBC information in the deploy.properties file.

Now start the sample. Enter the following commands, replacing /jrun and hostname
as necessary for your environment:

bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/samples/sample7c

If you are using a third-party JDBC driver, you must enter the following, being sure to
provide the correct path for the driver:

bash$ export JDBC_DRIVERS=/path/driver_name

Now enter the following commands (remember to use makew on Windows):

bash$ make jars
bash$ make deploy
bash$ make standalone

Now start up the client in another command prompt window (remember to use makew
on Windows):

bash$ make simulate host=hostname first=0 last=10 inheritance=1000

Prepared Statements
Sample 7c uses prepared statements for accessing the database. Some databases, such
as MS SQLServer with the stock JDBC/ODBC driver, will get ‘invalid ResultSet’ errors.
To prevent this error, add the following statement to the deploy.properties file:

ejipt.disableStmtPool=true

64 JRun Samples Guide

C H A P T E R 1 2

Chapter 12 Using EJB with Servlets

Contents

• Overview ... 66

• Sample 9a.. 66

66 JRun Samples Guide

Overview
Servlets are an excellent way to communicate with clients when your clients are
outside a firewall. This sample demonstrates accessing beans from a servlet.

Sample 9a
Before you begin, review the .java files in the sample9a/webapp/WEB-INF/classes
directory. They give you an idea of the code you add for servlets to communicate with
an EJB. To run this example, you use the following make (or makew) options:

• make jars: Compiles EJB files and creates a .jar file.

• make deploy: Deploys the EJB.

• make war: Compiles the servlets and creates a .war file.

• make wardeploy: Deploys the .war file.

• make startup: Starts the JRun default server.

If you have run other samples, be sure to delete the instance.store from the
/runtime directory before running this sample.

To run sample 9a, open a command prompt and start a shell. Set your environment
variables and change to the sample9a directory. Enter the following commands
(remember to use makew on Windows):

bash$ make jars
bash$ make deploy
bash$ make war
bash$ make wardeploy
bash$ make startup

Open your favorite browser and be sure it is set to accept cookies. Now point to
http://hostname:portnumber/sample9a. You should see a login screen similar to
the Java applications you have seen in the other samples. Login using ‘chief’ and
‘pass’ and enter transactions. This sample writes output to the default-event.log
file.

The servlet creates one cookie per client, therefore if you start a second browser on
the same machine it will have the same identity.

To stop the server, enter CTRL+C.

C H A P T E R 1 3

Chapter 13 JDK 1.1 Clients

Contents

• Sample 10a - Using JDK1.1 Clients ... 68

68 JRun Samples Guide

Sample 10a - Using JDK1.1 Clients
Sample 10a demonstrates using the EJB engine with JDK 1.1 and Java 2 clients
concurrently. There are extra steps involved when using JDK 1.1 clients, these steps are
necessary because JDK1.1 does not support RMI class loading from multiple URLs.

First, go to the deploy.properties for Sample 10a and set the server name to the
host’s name. Also notice the ejipt.isCompatible=true property, this property
notifies the EJB engine that RMI skeletons for 1.1 clients must be generated.

Now open a command prompt and start a shell. Set the JRUN_HOME environment
variable, change to the /sample10a subdirectory and enter the following commands
(remember to use makew on Windows):

bash$ make jars
bash$ make deploy
bash$ make standalone

Now connect to the client machine and create a directory named /sample10a. Copy
the following files from the server to the /sample10a directory on the client:

• /jrun/samples/sample10a/sample10a_client.jar

• /jrun/servers/default/runtime/ejipt_exports.jar - includes the stubs

• /jrun/lib/ejipt_client.jar - JRun standard extensions

• /jrun/lib/ext/ejb.jar - Java standard extensions

• /jrun/lib/ext/jta.jar - Java standard extensions

• /jrun/lib/ext/jndi.jar - Java standard extensions

Now open a command prompt on the client and change to the /sample10a directory
you just created. Set your classpath as follows:

> set CLASSPATH=sample10a_client.jar;ejipt_exports.jar;
ejipt_client.jar; ejb.jar;jta.jar;jndi.jar;C:\jdk\lib\classes.zip

The following command will start the client application. Be sure to set host to the
name you specified in the deploy.properties.

> java Client1_1 host chief pass

Running the client with the saver1 or spender1 user ids will demonstrate additional
authentication. The client connects to the server and calls the save method to save 100
with a repeat of 10 and then calls the spend method to spend 100 with a repeat of 10.
You may also start up the application for Java 2-based clients using make run
(remember to use makew on Windows).

C H A P T E R 1 4

Chapter 14 Make Files

Contents

• Using Make Files .. 70

• Choosing the Right Makefile ... 73

• Using Fail-Safe Mode ... 74

70 JRun Samples Guide

Using Make Files
This chapter describes in detail the make files provided with the samples. The
discussion uses Sample 1a for the examples.

If you prefer, you can enter the commands directly into a command prompt window
rather than using make files. To review the commands see the Deploying Beans chapter
in Developing Applications with JRun.

Make and makew

JRun includes separate make files for UNIX and Windows. The UNIX make files are
named make and use the GNU make utility. The Windows make files are named makew
and are .bat files. Anytime a make command appears in this manual, Windows users
should substitute makew.

Understanding the make files

This section describes the contents of the make files, used to run the samples under
UNIX. For information on running the make files under Windows (instead of makew),
see “Note to Cygnus users” on page 76.

The names of the bean’s home and remote interfaces, and the bean’s implementation
must be specified as illustrated in /jrun/samples/sample1a/ejbeans/Makefile. All of
your bean files must be included using the following format:

sources = $(addprefix ejbeans/, \
RemoteName.java\
BeanName.java\
HomeName.java\
)

Client related java files must also be specified. /jrun/samples/sample1a/client
illustrates this, it contains all of the names of client related files. Add your client files
using the following format:

sources = $(addprefix client/, \
ClientUI.java\
MainPanel.java\
)

The bean’s home and remote interface classes must also be specified, as illustrated in
/jrun/samples/sample1a/Makefile. Include your bean’s home and remote interfaces
using the following format:

ejb_clients = \
ejbeans/RemoteName.class\
ejbeans/HomeName.class

Understanding the makew files

This section describes the contents of the makew files, used to run EJB samples under
Windows.

Chapter 14: Make Files 71

The names of the bean’s home and remote interfaces, and the bean’s implementation
must be specified, as illustrated in /jrun/samples/sample1a/ejbeans/makew.bat. All
of your bean files must be included using the following format:

@set sources=ejbeans\Balance.java ejbeans\BalanceBean.java
ejbeans\BalanceHome.java

Client related java files must also be specified, as illustrated in
/jrun/samples/sample1a/client/makew.bat. Add your client files using the
following format:

@set sources=client\ClientUI.java client\EjbClient.java
client\LoginEvent.java client\LoginPanel.java client\MainPanel.java
client\Request.java

The bean’s home and remote interface classes must also be specified, as illustrated in
/jrun/samples/sample1a/make1.bat. Include your bean’s home and remote
interfaces using the following format (in this example, Balance.class is the remote
interface and BalanceHome.class is the home interface):

@set ejb_clients=ejbeans\Balance.class ejbeans\BalanceHome.class

Using Make Jars

To use the make files, open a command prompt and start a (bash or DOS) shell. Set
JRUN_HOME to the JRun installation directory, change to your working directory and
enter make jars as follows:

bash$ export JRUN_HOME=/jrun
bash$ cd /jrun/projectpath
bash$ make jars

For Windows, start a DOS shell and enter makew jars as follows:

set JRUN_HOME=/jrun
cd /jrun/projectpath
makew jars

Using Make Deploy

The Deploy tool is used to generate the home and remote implementations. It uses the
JDK compiler; however you can override that by setting the ejipt.javac property in
the deploy.properties file.

Once you have created the bean’s jar file, you can deploy the beans using make deploy,
forcing all bean implementations to be regenerated (remember to use makew on
Windows):

bash$ make deploy

You will see output similar to the following:

cd /jrun; java -Djava.security.policy=jrun.policy
-classpath lib/ejipt_tools.jar allaire.ejipt.tools.Deploy
Generating BalanceHomeObject...
Generating BalanceObject...

72 JRun Samples Guide

Compiling files...
Generating BalanceHomeObject_Stub...
Generating BalanceObject_Stub...
Compiling files...

Using Make Redeploy

The make redeploy command calls the Deploy tool with the -redeploy option. The
-redeploy option tells the Deploy tool to generate implementations only for those
beans that are new or have been updated since the last time the Deploy tool was run
(remember to use makew on Windows):

bash$ make redeploy

You will see output similar to the following:

cd /jrun; java -Djava.security.policy=jrun.policy
-classpath lib/ejipt_tools.jar allaire.ejipt.tools.Deploy -redeploy

Using Make Standalone

The make standalone command starts the EJB engine in stand-alone mode using the
.jar files in the /deploy directory. The .jar and .properties files in the /deploy
directory are copied to the /runtime directory (remember to use makew on Windows):

bash$ make standalone

You will see output similar to the following:

cd /jrun; java -Djava.security.policy=jrun.policy -classpath
lib/ejipt.jar allaire.ejipt.Ejipt

Once the EJB engine has completed startup it is ready to handle requests. You can then
start your clients and connect to the server.

The make standalone command starts the EJB engine using the directories and port
settings of the JRun default server. The JRun default server cannot be running when
you issue make standalone. Running the EJB engine in stand-alone mode allows you
to view bean processing in a console window. As an alternative to make standalone,
restart the JRun default server after running make deploy, issue the make command for
the client process, run the client application, and view results in the log file for the
JRun default server (/jrun/logs/default-event.log).

Using Make Classes

The make classes command compiles modified bean implementations into the
/runtime/classes directory. After running this command, you must use the load
command to reload the bean from the /runtime/classes directory. Use this
command to implement dynamic bean loading (remember to use makew on Windows):

bash$ make classes

Chapter 14: Make Files 73

Using Make Start

The make start command starts the EJB engine in fail-safe mode using the .jar files
in the /deploy directory. The .jar and .properties files in the /deploy directory are
copied to the /runtime directory (remember to use makew on Windows):

bash$ make start

You will see output similar to the following:

cd /jrun; java -Djava.security.policy=jrun.policy -classpath
lib/ejipt_tools.jar allaire.ejipt.tools.Server -start

Once the server has started it is ready to handle requests. You can then start your
clients and connect to the server.

Using Make Restart

The make restart command starts the EJB engine in fail-safe mode using the .jar
files previously copied to the /runtime directory (remember to use makew on
Windows):

bash$ make restart

You will see output similar to the following:

cd /jrun; java -Djava.security.policy=jrun.policy -classpath
lib/ejipt_tools.jar allaire.ejipt.tools.Server -restart

Once the server has started it is ready to handle requests. You can then start your
clients and connect to the server.

Choosing the Right Makefile
The following are guidelines regarding when to use the most common make
commands.

Make Files

Makefile When to use

make jars
makew jars

Use this command any time the bean’s implementation or
interfaces have been modified. Also use if either the bean’s
properties or default.properties have changed.

make deploy
makew deploy

Use this command when you want to generate object
implementations for all of your beans. By default the Deploy tool
generates implementations of all beans.

make redeploy
makew redeploy

This command forces the Deploy tool to generates object
implementations only for new or updated beans.

74 JRun Samples Guide

Using Fail-Safe Mode
Except where noted, EJB samples can be run in stand-alone mode or in fail-safe mode
using RMID. The sample descriptions contain instructions for stand-alone mode.
However if you prefer to run in fail-safe mode, be sure to start RMID by following the
directions below, then replace make standalone with make start (remember to use
makew on Windows). If you prefer to use command line entries rather than make files,
enter the following commands:

> cd /jrun; java -Djava.security.policy=jrun.policy -classpath
lib/ejipt_tools.jar allaire.ejipt.tools.Server -start

To stop the server when running in fail-safe mode enter make stop or enter the
following command:

> cd /jrun; java -Djava.security.policy=jrun.policy -classpath
lib/ejipt_tools.jar allaire.ejipt.tools.Server -stop

make standalone
makew standalone

This command starts the EJB engine in stand-alone mode using
the jar files from the /deploy directory. It copies the bean jars the
Deploy tool previously processed, along with the generated
runtime.properties file, from the /deploy directory to the
/runtime directory. It also copies the object implementation
(ejipt_objects.jar) and stubs (ejipt_exports.jar) jars.

make start
makew start

This command starts the EJB engine in fail-safe mode using the
jar files from the /deploy directory. It copies the bean jars that
the Deploy tool has previously processed, along with the
generated runtime.properties file, from the /deploy directory to
the /runtime directory. It also copies the object implementation
(ejipt_objects.jar) and stubs (ejipt_exports.jar) jars. RMID must
be started prior to make start.

make restart
makew restart

This command starts the EJB engine using the jar and
runtime.properties files previously copied to the runtime
directory. This implies that the EJB engine cannot be “restarted”
without first “starting” it. RMID must be started prior to make
restart.

make classes
makew classes

This command compiles modified beans into the
runtime/classes directory.

make allclean
makew allclean

This command removes all of the generated files from the
/ejbeans and /client directories.

Make Files (Continued)

Makefile When to use

Chapter 14: Make Files 75

JRun will take a moment to shutdown while it performs clean up and finalizes
transactions. Once it has stopped, be sure to shut down RMID services by following the
instructions below.

Using RMID

RMID provides remote activation of the server. When a client attempts to connect to
the server, RMID ensures the server is available by starting the server if necessary. To
start RMID use the instructions appropriate for your environment.

RMID on Solaris and Linux

To start RMID on Solaris or Linux enter the following commands:

% cd /tmp
% rmid

By default, you will receive output messages into the RMID log window. To stop RMID
on Solaris enter the following command:

% rmid -stop

RMID on Windows

To start RMID on Windows open a command prompt window and enter the following
commands:

> cd \temp
> start rmid

A new window will appear with the title rmid.exe. By default, you will receive output
messages into the new window. This window will stay open until RMID is stopped.

To stop RMID on Windows enter the following command:

> rmid -stop

Troubleshooting RMID

RMID creates a log file that is used to automatically restart the server. To start a new
instance of the server, the log file should first be deleted. The log directory was created
in the directory you were in when you started RMID.

If you attempt to start the server in fail-safe mode without first starting RMID, the
server will not start up properly. If this has occurred or you receive an exception with
the message “Failed to acquire lock, operation aborted” you must reset your
environment. To reset your environment and start the server, perform the following
steps:

1. Issue a make stop or equivalent.

2. Access the /runtime directory and remove the *.id and *.lock files.

76 JRun Samples Guide

3. Be sure to remove any /log directories from prior instances of RMID.

4. Issue “start rmid”.

 Issue make start or equivalent.

Note to Cygnus users
You can also use a Windows version of the GNU make utility if you prefer. If you are
using the Cygnus tools, the following environment variable must be set:

MAKE_MODE=UNIX

If you installed JRun in the Program Files directory and are using the bash shell, you
will have to use escape characters to handle the space in the name when working in a
bash shell. The commands will be as follows:

bash$ export JRUN_HOME=”/Program\ Files/Allaire/JRun”
bash$ cd /Program\ Files/Allaire/JRun/samples/sample1a

If you installed JRun to a directory on a drive other than the C: drive, the commands
you enter when working in a bash shell will be slightly different. For example, if you
installed to “D:\jrun”, the commands would be as follows:

bash$ export JRUN_HOME=d:/jrun
bash$ cd //d/jrun/samples/sample1a

Index

Special
/jrun

compared to JRUN_HOME 7
Usage 6, 22

@your_host 62
2-phase commit transaction

management 40

A
actions, See Tag libraries
Additional samples 7
Allaire DevCenter 7
asynchronous messaging 50
Authentication

custom bean 30
EJB 22, 25

autocallers 58

B
bash shell 23
bean managed persistence

(BMP) 32, 61

C
callback methods 32
Color size bean JSP sample 10
Container Managed Persistence

(CMP) 36, 62, 63
cookies 19
CounterServlet servlet

sample 19
createSQL 36
custom authentication 30
Custom tags, See Tag libraries

D
DateServlet servlet sample 19
DeadlockException 60
Deadlocks 58, 60
default server 72
default.MessageQueueHome 50

deploy.properties 22, 32
production environment 24
roles 22, 25
users 22, 25

De-referenced EJB objects 47
DevCenter 7
DOS shell 23
dynamic release 46

E
EJB

running EJB samples 2
sample overview 4

EJB engine
stand-alone mode 72

ejb.containerManagedFields 36,
37

ejb.jar 68
ejb.sessionTimeout 61
ejb.transactionAttribute 41
EjbClient.java 41
ejbLoad 32, 62
ejbLoads 47
ejbPostCreate 32, 62
ejbStore 32, 62
ejipt.classServer.host 23
ejipt.ejbDirectory 43
ejipt.enableMessaging 50
ejipt.export(0) 27
ejipt.isCompatible 68
ejipt.javac.* 24
ejipt.jdbcSources 32, 36, 62
ejipt.logSQLRequests 36
ejipt.maxContexts 54
Ejipt.prepareEnvironment 27
Ejipt.prepareProperties 27
ejipt.sourcePassword 32, 36, 62
ejipt.sourceURL 32, 36, 62
ejipt.sourceUser 32, 36, 62
ejipt.start() 27
ejipt.storeName 37

ejipt_client.jar 68
ejipt_exports.jar 24, 68
ejipt_objects.jar 24
Enterprise JavaBeans, see EJB
entity beans 58

F
firewalls 23
ForEach tag sample 16

G
garbage collection 46
generateDemoPageEnd

method 18
generateDemoPageStart

method 18
getCookieData method 20
getHeaderData method 20
getRequestData method 20
getRequestParameterData

method 20
getRequestParametersData

method 20

H
Hello World JSP sample 10
HotSpot 46
HTML form JSP sample 11

I
instance.store 6, 22, 43
invalid ResultSet 63

J
Java debugger 26, 28
Java Message Service (JMS) 50
JavaScript JSP sample 11
jdb 28
JDBC 32, 61
JDBC driver 62
JDBC/ODBC 36, 61, 62

78 JRun Samples Guide

JDBC_DRIVERS 33, 37, 62, 63
JDK 1.1 67
JDK requirements for EJB 22
Jikes 24
JMS 50
jms.messageCapacity 53
jms.multicast.groupAddress 50
jms.multicast.port 50
jms.multicast.ttl 50
JNDI 22
jndi.jar 68
JRun default server, EJB sample

usage 25, 72
JRUN_HOME environment variable 6
JRunDemoServlet class 18
JSP

JSP 1.1 specification 3
sample overview 2

JSP samples
Color size bean 10
Hello World 10
HTML form 11
JavaScript 11
Query string 11

jta.jar 68

L
Large Enumerations 48
Linux 22, 75
listener 53
localhost 23
log file 72
login 40

M
make allclean 74
make classes 74
make deploy 24, 73
make jars 24, 73
make redeploy 73
make restart 74
make run 25
make standalone 24

EJB engine vs. JRun default
server 72

example 24
explanation 74

make start 74
makew 70
manifest 22
Message.setText 51
MessageListener 54, 55
messaging 53
Multicast 50

N
NoSuchObjectException 60

O
ODBC 32
onMessage 54
Oracle 32, 36, 61

P
page hit counter 19
Param tag sample 15
point-to-point 50
postCreate 36
Prepared Statements 63
PrintWriter object 19
properties

bean 22
publish/subscribe 50, 53

Q
Query string JSP sample 11
QueueConnection 51
QueueConnectionFactory 51
QueueReceiver 51
queues 50
QueueSender.send 51
QueueSession 51

R
ResourceManager 32
RMI Sockets 47
RMID 74
rmid -stop 75
Roles

custom authentication 30
deploy.properties 22, 25

runtime.properties 24

S
security, custom authentication 30
Servlet API methods 20
Servlets

CounterServlet 19
DateServlet 19
JRunDemoServlet 18
sample overview 3
SimpleServlet 18
SnoopServlet 20

session beans
stateful 58
stateless 58

SnoopServlet servlet sample 20
Solaris 75
SQLServer 36, 61

SSL sockets 47
start rmid 76
stateful session beans 58
stateless session beans 58

synchronous messaging 50
System requirements 22

T
Tack2 sample application 7
Tag library samples

foreach 16
form 15
input 15
overview 3
param 15
select 15
servlet 15
servletparam 15

Thin JDBC driver 36
Time-To-Live 50
topics 50, 53
transaction.begin 41
transaction.commit 41
transaction.rollback 41
tx_mandatory 41

U
UNIX 22
Users

custom authentication 30
deploy.properties 22, 25

W
Windows 22, 75

	Introduction
	About JRun Samples
	Samples for Servlet Technologies
	JSP sample overview
	Custom tag library sample overview
	Servlet sample overview

	EJB Samples
	EJB sample overview
	Additional EJB information

	Additional Samples

	JSP Samples
	JSP Sample Overview
	Hello World
	Description
	File name
	What to look for

	Color Size Bean
	Description
	File name
	What to look for

	JavaScript Example
	Description
	File name
	What to look for

	QueryString Example
	Description
	File name
	What to look for

	HTML Form Example
	Description
	File name
	What to look for

	Tag Library Samples
	Tag Library Sample Overview
	Query and QueryParam
	Description
	File name
	What to look for

	Form, Input, and Select
	Description
	File name
	What to look for

	Servlet and ServletParam
	Description
	File name
	What to look for

	Param
	Description
	File name
	What to look for

	ForEach
	Description
	File name
	What to look for

	Servlet Samples
	Sample Servlet Overview
	JRunDemoServlet
	Description
	File name
	What to look for

	SimpleServlet
	Description
	File name
	What to look for

	DateServlet
	Description
	File name
	What to look for

	CounterServlet
	Description
	File name
	What to look for

	SnoopServlet
	Description
	File name
	What to look for

	Getting Started with EJB Samples
	Overview
	Before You Begin
	Sample�1a - Simple Beans and Security
	Running the samples

	How to Use Sample�1a
	Multiple clients

	Sample�1a Usage Scenarios
	Embedding the EJB engine
	Subclassing the EJB engine
	Debug mode
	Client updates

	Sample�1b - Custom Authentication

	Bean Managed Persistence
	Overview
	Sample�2a - Default Authentication
	Sample�2b - Custom Authentication

	Container Managed Persistence
	Overview
	Sample�3a - Default Authentication
	Using the instance.store

	Transactions
	Sample�4a - Distributed Transactions
	Customization of the JNDI Context
	Client Demarcated Transactions
	Implicit Transactions

	Sample�4b - Transactions and CMP

	Object Management
	Overview
	Sample�5a - Dynamic Object Release
	Sample�5b - Custom RMI Sockets
	Sample�5c - Large Enumerations

	Messaging
	Overview
	Sample�6a - Point-to-Point
	Sample�6b - Publish/Subscribe
	Sample�6c - EJB Integration

	Advanced Beans
	Overview
	Beans
	Process
	Deadlocks
	Sample�7a - Complex Processing
	Sample�7b - Complex Processing with BMP
	Sample�7c - Complex Processing with CMP
	Prepared Statements

	Using EJB with Servlets
	Overview
	Sample�9a

	JDK 1.1 Clients
	Sample�10a - Using JDK1.1 Clients

	Make Files
	Using Make Files
	Make and makew
	Using Make Jars
	Using Make Deploy
	Using Make Redeploy
	Using Make Standalone
	Using Make Classes
	Using Make Start
	Using Make Restart

	Choosing the Right Makefile
	Using Fail-Safe Mode
	Using RMID
	RMID on Solaris and Linux
	RMID on Windows
	Troubleshooting RMID

	Note to Cygnus users

